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Abstract. The paper presents a logic for reasoning about covering-
based rough sets using three logical values: the value t corresponding
to the positive region of a set, the value f — to the negative region, and
the undefined value u — to the boundary region of that set. Atomic
formulas of the logic represent membership of objects of the universe in
rough sets, and complex formulas are built out of the atomic ones us-
ing three-valued Kleene connectives. In the paper we provide a strongly
sound and complete Gentzen-style sequent calculus for the logic.

1 Introduction

Rough sets, developed by Pawlak in the early 1980s [18, 19], represent a simple
and yet very powerful notion designed to model vague or imprecise information.
Unlike Zadeh’s fuzzy sets, they are not based on any numerical measure of the
degree of membership of an object in an imprecisely defined set. Instead, they
employ a much more universal and versatile idea of an indiscernibility relation,
which groups together objects having the same properties from the viewpoint of
a certain application into disjoint equivalence classes.

This concept has proved to be extremely useful in practice. Since their intro-
duction in the early 1980s, rough sets have found numerous applications in areas
like control of manufacturing processes [14], development of decisions tables [20],
data mining [14], data analysis [21], knowledge discovery [15], and so on. They
have also been the subject of an impressive body of research. Though it focused
mainly on algebraic properties of rough sets, a number of logicians have also
explored this area, presenting and studying various brands of logics connected
with rough sets [6, 5, 7, 8, 12, 16, 17, 10, 9, 23, 24].

Over the years, the original notion of rough sets has been generalized by
replacing the indiscernibility relation (representing a partition of the universe
of objects) underlying Pawlak’s approach with other, less restrictive constructs.
The broadest generalization are covering-based rough sets [27, 22], defined based
on an arbitrary covering of the universe of objects. By now, this notion has also
been examined in many papers (see e.g. [25, 26, 29]), with the main focus again
on the algebraic properties of such generalized rough sets.



In this paper we explore the logical aspects of covering-based rough sets,
employing for that purpose a three-valued logic. The motivation for using three
logical values stems from the fact that, like in case of Pawlak’s rough sets, a
covering-based approximation space defines three regions of any set X of objects:

– positive region of X, containing all objects of the universe which certainly
belong to X in the light of the information provided by the covering;

– negative region of X, containing all objects which certainly do not belong to
X;

– boundary of X, containing all objects which cannot be said for sure to either
belong or not to belong to X.

Hence the most natural idea for reasoning about membership of objects in
covering-based rough sets is to use a three-valued logic, with the following values:

– t — meaning “certainly belongs”, and assigned to objects in the positive
region of a given set;

– f — meaning “certainly does not belong” and assigned to objects in the
negative region of the set; and

– u — meaning “not known to either belong or not”, and assigned to the
boundary of the set.

Such an idea was first exploited in [3] for the original rough sets based on
an equivalence relation on the universe of objects. However, the logic developed
there was just a simple propositional logic generated by the three-valued non-
deterministic matrix (see [4, 2]), shortly: Nmatrix, which did reflected only some
properties of set-theoretic operations on rough sets.

Then next attempt was made in [13] for covering-based rough sets. There the
semantics of the logics was based on the natural frameworks for such sets, i.e.
covering-based approximations spaces. Atomic formulas of the logic represented
either membership of objects of the universe in rough sets or the subordination
relation3 between objects generated by the covering underlying the approxima-
tion space, and complex formulas were formed out of the atomic ones using
three-valued Kleene connectives. A Gentzen sequent calculus for the logic was
presented, and its strong soundness was proved. However, strong completeness
was only proved for the subset of the language containing formulas without
set-theoretic operations on rough sets.

In this paper we improve on the results of [13] by providing a strongly sound
and complete Gentzen calculus for the logic of rough sets defined as in [13], but
without the subordination relation.

The paper is organized as follows. Section 2 presents the fundamentals of
covering-based rough sets. Section 3 defines the syntax and semantics of the logic
LRS examined in the paper, including satisfaction and consequence relations

3 Given a covering C of a universe U , the subordination relation generated by C is
the binary relation ≺C on U such that x ≺C y ⇔ (∀C ∈ C)(y ∈ C → x ∈ C). The
relation ≺C is reflexive and symmetric, and it is an equivalence relation iff C is a
partition, i.e. in case of the original Pawlak’s rough sets.
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for formulas and sequents, Section 4 presents a strongly sound and complete
Gentzen sequent calculus for LRS , and finally Section 5 presents the conclusions
and outlines future work.

2 Covering-based rough sets

In what follows, for any set X, by P(X) we denote the powerset of X, i.e. the
set of all subsets of X, and by P+(X) — the set of all nonempty subsets of X.

Definition 1. By a covering-based approximation space, or shortly approxima-
tion space, we mean any ordered pair A = (U, C), where U is a non-empty
universe of objects, and C ⊆ P+(U) is a covering of U , i.e.

∪{C | C ∈ C} = U .

Definition 2. For any approximation space A = (U, C):

– The lower approximation of a set X ⊆ U with respect to the covering C is

LC(X) = {x ∈ U | ∀C ∈ C(x ∈ C ⇒ C ⊆ X)}

– The upper approximation of a set X ⊆ U with respect to the covering C is

HC(X) =
∪

{C ∈ C | C ∩X ̸= ∅}

In view of the above definition, one can say that, given the approximate
knowledge about objects available in the approximation space A:

– LC(X) is the set of all the objects in U which certainly belong to X;
– HC(X) is the set of all the objects in U which might belong to X;

The above operations have the same basic properties as in case of Pawlak’s
rough sets based on a partition of the universe, i.e. for any X,Y ⊆ U , we have:

LC(X) ⊆ X ⊆ HC(X)

HC(X ∪ Y ) = HCX ∪HCY LC(X ∪ Y ) ⊇ LCX ∪ LCY

LC(X ∩ Y ) = LCX ∩ LCY HC(X ∩ Y ) ⊆ HCX ∩HCY

LC(−X) = −HCX HC(−X) = −LCX

(1)

where none of the inequalities in (1) can be replaced by the equality.
Following the example of Pawlak’s rough sets, with any subset of a universe

U of an approximation space we can associate three regions of that universe:
positive, negative and boundary, representing three basic statuses of membership
of an object of the universe U in X:

Definition 3. Let A = (U, C) be an approximation space, and let X ⊆ U . Then:

– The positive region of X in the space A with respect to the covering C is

POSC(X) = LC(X)
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– The negative region of X in the space A with respect to the covering C is

NEGC(X) = LC(U −X)

– The boundary region of X in the space A with respect to the covering C is

BNDC(X) = U − (POSC(X) ∪NEGC(X))

Corollary 1. For any approximation space A = (U, C) and any X ⊆ U :

POSC(X) = {x ∈ U | ∀C ∈ C(x ∈ C ⇒ C ⊆ X)}
NEGC(X) = {x ∈ U | ∀C ∈ C(x ∈ C ⇒ C ⊆ U −X)}
BNDC(X) = {x ∈ U | ∃C ∈ C(x ∈ C ∧ C ∩X ̸= ∅ ∧ C ∩ (U −X) ̸= ∅}

(2)

The regions defined as above are obviously disjoint. Moreover, we can say that,
according to the approximate knowledge of the properties of objects in U pro-
vided by the covering C:

– The elements of POSR(X) certainly belong to X;
– The elements of NEGR(X) certainly do not belong to X;
– We cannot tell if the elements of BNDR(X) belong to X or not.

As a result, the most natural solution choice of a logic for reasoning about
covering-based rough set is — exactly like in case of Pawlak’s rough sets — to
base it on three logical values: t — true, f – false, u — unknown, corresponding
to the positive, negative and the boundary region of a set, respectively.

3 Syntax and semantics of the language LRS

Now we shall define the language LRS of the three-valued logic for reasoning
about covering-based rough sets described in the introduction. Formulas of LRS

will contain expressions representing sets of objects (built from set variables
and set constants using set-theoretic operators), variables representing objects,
the symbol ∈̂ of a three-valued binary predicate representing membership of an
object in a rough set, and the logical connectives ¬,∧,∨ which will be interpreted
as 3-valued Kleene connectives.

3.1 Syntax of LRS

Definition 4. Assume that:

– OV is a non-empty denumerable set of object variables;
– SV is a non-empty denumerable set of set variables,
– 0 and 1 are set constants

The syntax of the language LRS is defined as follows:

1. The set SE of set expressions of LRS is the least set containing SV ∪{0,1},
and closed under the set-theoretic operators −,∪,∩;

2. The set of atomic formulas of LRS is ARS = {x ∈̂A | x ∈ OV,A ∈ SE};
3. The set FRS of formulas of LRS is the least set F containing ARS and closed

under the connectives ¬,∨,∧.
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3.2 Semantic frameworks for LRS and interpretation of formulas

The semantics of LRS is based on interpreting the formulas of LRS in semantic
frameworks for that language, built on covering-based approximation spaces and
including valuations of set variables and object variables.

Definition 5. A semantic framework, or shortly framework, for LRS is an or-
dered triple R = (A, v, w), where:

– A = (U, C) is a covering-based approximation space;
– v : OV → U is a valuation of object variables;
– w : SV → P(U) is a valuation of set variables and constants such that
w(0) = ∅, w(1) = U .

For any valuation w : SV → P(U), by w∗ we shall denote the extension
of w to SE obtained by interpreting −,∪,∩ as the set-theoretic operations of
complement, union and intersection. In other words:

w∗(X) = w(X) for any X ∈ SV ,w∗(−A) = U − w(A) for any A ∈ SE, and

w∗(A ∪B) = w∗(A) ∪ w∗(B), w∗(A ∩B) = w∗(A) ∩ w∗(B) for any A,B ∈ SE

Definition 6. An interpretation of LRS in a framework R = (A, v, w), where
A = (U, C), is a mapping IR : FRS → {t, f,u} defined as follows:

1. For any x, y ∈ OV and any A ∈ SE,

IR(x ∈̂A) =





t if v(x) ∈ PosC(w∗(A))
f if v(x) ∈ NegC(w∗(A))
u if v(x) ∈ BndC(w∗(A))

.

2. For any φ,ψ ∈ F ,

– IR(¬φ) =





t if IR(φ) = f
f if IR(φ) = t
u if IR(φ) = u

– IR(φ ∨ ψ) =





t if either IR(φ) = t or IR(ψ) = t
f if IR(φ) = f and IR(ψ) = f
u otherwise

– IR(φ ∧ ψ) =





t if IR(φ) = t and IR(ψ) = t
f if either IR(φ) = f or IR(ψ) = f
u otherwise

It can be easily seen that the interpretation IR is a well-defined mapping of the
set of formulas into {t, f,u}. Indeed, as the regions of a rough set are disjoint,
Point 1 provides a well-defined interpretation of atomic formulas, and the clauses
for ¬,∨,∧ in Point 2 extend it uniquely to complex formulas. In the sequel we
will drop the subscript R at IR if R is arbitrary or understood.
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3.3 Satisfaction and consequence relations for formulas and
sequents

To complete the definition of the semantics of LRS , we need to define the notions
of satisfaction and the consequence relation. Since the proof system we are going
to develop for LRS will be a sequent calculus, we will define both the notions
for formulas as well as for sequents.

Definition 7.

– By a sequent we mean a structure of the form Γ ⇒ ∆, where Γ and ∆
are finite sets of formulas. The set of all sequents over the language LRS is
denoted by SeqRS.

– A sequent Σ ∈ SeqRS is called atomic if each formula in Σ is atomic.

Depending on the specific application of rough sets, we can choose either
the strong version of the three-valued semantics of LRS — with t as the only
designated value, or its weak version — with two designated values: t,u, which
leads to a paraconsistent logic. In this paper, we choose the strong semantics
like in [3], leaving the weak version for future work, Consequently, we adopt the
following definitions of satisfaction and consequence:

Definition 8. 1. A formula φ ∈ FRS is satisfied by an interpretation I of
LRS, in symbols I |= φ, if I(φ) = t.

2. A formula φ ∈ FRS is valid, in symbols |=RS φ, if I |= φ for any interpre-
tation I of LRS.

3. A set of formulas T ⊆ FRS is satisfied by an interpretation I, in symbols
I |= T , if I |= φ for all φ ∈ T .

4. A sequent Σ = (Γ ⇒ ∆) is satisfied by an interpretation I, in symbols
I |= Σ, iff either I |= φ for some φ ∈ ∆, or I ̸|= ψ for some ψ ∈ Γ .

5. A sequent Σ = (Γ ⇒ ∆) is valid, in symbols |=RS Σ, if I |= Σ for any
interpretation I of LRS

6. The formula consequence relation in LRS is the relation ⊢RS on P(FRS) ×
FRS such that, for every T ⊂ FRS and every φ ∈ FRS , T ⊢RS φ if each
interpretation I of LRS which satisfies T satisfies φ too.

7. The sequent consequence relation in LRS is the relation ⊢RS on P(SeqRS)×
SeqRS such that, for every Q ⊆ SeqRS, and every Σ ∈ SeqRS , Q ⊢RS Σ iff,
for any interpretation I of LRS , I |=RS Q implies I |=RS Σ.

Note that the use of the same symbol for the formula and sequent consequence
relations will not lead to misunderstanding, for the meaning of the symbol will
always be clear from the context.

4 Proof system for the logic LRS

Now we shall present a proof system for the logic LRS with the language LRS ,
corresponding to the consequence relation ⊢RS defined in the preceding section.
The deduction formalism we use for LRS is a Gentzen-style sequent calculus.
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Sequent calculus CRS

Axioms: (A1) φ ⇒ φ (A2) x ∈̂0 ⇒ (A3) ⇒ x ∈̂1

Structural rules: weakening, cut

Boolean tautology rules: for any A,B ∈ SE such that A ≡ B

(taut− l)
Γ, x ∈̂A ⇒ ∆
Γ, x ∈̂B ⇒ ∆

(taut− r)
Γ ⇒ ∆,x ∈̂A
Γ ⇒ ∆,x ∈̂B

Intersection rules:

(∩ ⇒)
Γ, x ∈̂B, x ∈̂C ⇒ ∆
Γ, x ∈̂B ∩ C ⇒ ∆

(⇒ ∩)
Γ ⇒ ∆,x ∈̂B Γ ⇒ ∆,x ∈̂C

Γ ⇒ ∆,x ∈̂B ∩ C

Inference rules for Kleene connectives:

(¬ ∈̂ ⇒)
Γ, x ∈̂ −A ⇒ ∆
Γ,¬(x ∈̂A) ⇒ ∆

(⇒ ¬ ∈̂)
Γ ⇒ ∆,x ∈̂ −A
Γ ⇒ ∆,¬(x ∈̂A)

(¬¬ ⇒)
Γ, φ ⇒ ∆

Γ,¬¬φ ⇒ ∆
(⇒ ¬¬)

Γ ⇒ ∆,φ
Γ ⇒ ∆,¬¬φ

(∨ ⇒)
Γ, φ ⇒ ∆ Γ,ψ ⇒ ∆

Γ,φ ∨ ψ ⇒ ∆
(⇒ ∨)

Γ,⇒ ∆,φ, ψ
Γ ⇒ ∆,φ ∨ ψ

(¬∨ ⇒)
Γ,¬φ,¬ψ ⇒ ∆
Γ,¬(φ ∨ ψ) ⇒ ∆

(⇒ ¬∨)
Γ ⇒ ∆,¬φ Γ ⇒ ∆,¬ψ

Γ ⇒ ∆,¬(φ ∨ ψ)

(∧ ⇒)
Γ, φ, ψ ⇒ ∆
Γ,φ ∧ ψ ⇒ ∆

(⇒ ∧)
Γ ⇒ ∆,φ Γ ⇒ ∆,ψ

Γ ⇒ ∆,φ ∧ ψ

(¬∧ ⇒)
Γ,¬φ ⇒ ∆ Γ,¬ψ ⇒ ∆

Γ,¬(φ ∧ ψ) ⇒ ∆
(⇒ ¬∧)

Γ ⇒ ∆,¬φ,¬ψ
Γ ⇒ ∆,¬(φ ∧ ψ)

In all axioms and inference rules, we assume that x, y, z ∈ OV , A,B ∈ SE.
Note that though the axiom φ,¬φ is missing in the formulation of CRS, it is

in fact derivable in CRS. Indeed, at the atomic level, from A1 and rule (¬ ∈⇒)
we can deduce that (1) ⊢CRS x ∈̂A,¬(x ∈̂A) ⇒ x ∈̂A, x ∈̂ − A. In turn, from
A1 and rule (⇒ ∩) we can obtain (2) ⊢CRS x ∈̂A, x ∈̂ − A ⇒ x ∈ (A ∩ −A).
Considering that A ∩ −A ≡ 0, from rule (taut − l) we can deduce that (3)
⊢CRS x ∈ (A ∩ −A) ⇒ x ∈̂0. Applying cut, from 1), (2), (3) and Axiom A2 we
conclude that ⊢CRS x ∈̂A,¬(x ∈̂A) ⇒ , so φ,¬φ ⇒ holds for atomic φ. The fact
that it holds for complex φ too can be shown by structural induction using the
inference rules for Kleene connectives .
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Lemma 1.

1. The axioms of the system CRS are valid.
2. For any inference rule ρ of CRS and any framework R for LRS, if the inter-

pretation I of LRS in R satisfies all the premises of ρ, then I satisfies the
conclusion of ρ as well.

Both parts can be easily verified based on the individual clauses of the definition
of I given in Definition 6.

Clearly, from the above Lemma we can immediately conclude that:

Corollary 2. The inference rules of CRS are strongly sound, i.e. they preserve
the validity of sequents.

5 Strong soundness and completeness of the proof system

To prove strong completeness of CRS, we start with simple characterization of
valid single-variable atomic sequents.

Definition 9. For any A,B ∈ SE, we say that:

1. A is Boolean-equivalent to B, and write A ≡ B, iff A = B is a Boolean
tautology;

2. A is Boolean-included in B, and write A ⊑ B, iff A ∩ B = A is a Boolean
tautology, i.e. iff A ∩B ≡ A.

Proposition 1. A sequent Σ = x ∈̂A1, . . . , x ∈̂Ak ⇒ x ∈̂B1, . . . , x ∈̂Bl is valid
iff one of the following conditions is satisfied:

(1) A1 ∩A2 ∩ · · · ∩Ak ≡ 0 (2) Bi ≡ 1 for some i ≤ l

(3) A1 ∩A2 ∩ · · · ∩Ak ⊑ Bi for some i ≤ l

Proof. The backward implication follows easily from the semantics of LRS . To
prove the forward implication, we argue by contradiction. Assume that a sequent
Σ of the form given above is such that:

(I) A1 ∩A2 ∩ · · · ∩Ak ̸≡ 0 (II) Bi ̸≡ 1 for each i ≤ l

(III) A1 ∩A2 ∩ · · · ∩Ak ̸⊑ Bi for each i ≤ l

Define
SV0 = {X ∈ SV | X occurs in Σ}

SE0 = {A ∈ SE | A contains only set variables in SV0}
As SV0 is finite, SV0 = {X1, X2, . . . , Xn} for some n. The counter-model con-
struction is based on the use of the full disjunctive normal form (DNF) of an
expression in SE0 with respect to SV0. Such a DNF is of the form

Xϵ = Xϵ1
1 ∩Xϵ2

2 ∩ · · · ∩Xϵn
n
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where ϵ = (ϵ1, ϵ2, . . . , ϵn) ∈ {−1, 1}n, and X1
j = Xj , X

−1
j = −Xj .

Let A = A1 ∩A2 ∩ · · · ∩Ak. Then A ̸≡ 0 by (I), so we have

DNF(A) = Xϵ1 ∪ Xϵ2 ∪ · · · ∪ Xϵp

for some p ≥ 1, ϵ1, · · · , ϵp ∈ {−1, 1}n. Since DNF(E) ≡ E for any E ∈ SE0, then
by (III) we get DNF(A) ̸⊑ DNF(Bi) for each i ≤ l. Hence for each i ≤ l there is
a ji ≤ p such that Xϵji does not occur in DNF(Bi).

Let us assign a unique symbol aϵ ̸∈ OV ∪ SV to any ϵ ∈ {−1, 1}n. As the
universe of our counter-model R we take U = {x} ∪ {aϵ | ϵ ∈ {−1, 1}n}, and
as the covering underlying the approximation space — C = {C(u) | u ∈ U},
where C(u) = {u} for u ̸= x, and C(x) = {x, aϵ1 , aϵ2 , . . . , aϵp}. The valuation of
variables v is given by v(y) = x for any x ∈ OV . Finally, to define the valuation
of set variables, we first define ξ(Xϵ1) = {x, aϵ1} and ξ(Xϵ) = {aϵ} for any
ϵ ∈ {−1, 1}n \ {ϵ1}. Then we put w(X) = ∅ for X ∈ SV \ SV0, and define w on
SV0 by taking

w(Xj) =
∪

{ξ(Xϵ) | ϵ ∈ {−1, 1}n, ϵj = 1}

for j = 1, 2, . . . , n (recall that SV0 = {X1, X2, . . . , Xn}). It is easy to check that
R = ((U, C), v, w) is a well-defined semantic framework for LRS , and

w∗(A1 ∩A2 ∩ · · ·Ak) = w∗(X) = {x, aϵ1 , aϵ2 , . . . , aϵp} = C(x) (3)

However, as w∗(A1 ∩A2 ∩· · ·∩Ak) =
∩k

r=1 w
∗(Ar) ⊆ w∗(Aj) for each j ≤ k, (3)

implies that C(x) ⊆ w∗(Aj) for any j ≤ k, Since C(x) is the only set C ∈ C such
that x ∈ C, then from Corollary 1 we obtain x ∈ POS(w∗(Aj)) and IR |= x ∈̂Aj

for j = 1, 2, . . . , k. On the other hand, as Xϵji does not occur in DNF(Bi) for
any i ≤ l, then aϵji ̸∈ w∗(DNF(Bi)) = w∗(Bi) for each i ≤ l, which in view of
aϵji ∈ C(x) implies C(x) ̸⊆ w∗(Bi) for each i ≤ l. As a result, IR ̸|= x ∈̂Bi for
i = 1, 2, . . . , l. Thus IR ̸|= Σ, which ends the proof.

Since LRS has no means for expressing relationships between object variables,
Proposition 1 implies a similar result for multi-variable atomic sequents:

Corollary 3. An atomic sequent Σ ∈ SeqRS is valid if and only if, for some
object variable x occurring in Σ, the sequent Σx obtained from Σ by deleting
all formulas with variables different from x satisfies one of the conditions of
Proposition 1.

The proof is analogous to that of Proposition 1, with the counter-model for a
sequent Σ which does not satisfy any of conditions (1),(2),(3) of that Proposition
constructed by combining the individual countermodels for all single-variable
subsequents of Σ, constructed exactly like in the proof of Proposition 1.

From the results of the preceding section, we can easily conclude that CRS
is complete for atomic sequents:

Proposition 2. If an atomic sequent Σ ∈ SeqRS is valid, then it is derivable
in CRS, i.e. ⊢CRS Σ.
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Proof. For any variable x occurring in Σ, denote by Σx the atomic sequent
obtained out of Σ by deleting all formulas with variables different from x. Since
Σ is valid, then, by Corollary 3, there exists an x such that Σx satisfies one
of the conditions (1), (2), (3) of Proposition 1. Hence, assuming that Σx =
x ∈̂A1, . . . , x ∈̂Ak ⇒ x ∈̂B1, . . . , x ∈̂Bl, we have

either (1) A1 ∩A2 ∩ · · · ∩Ak ≡ 0 or (2) Bi ≡ 1 for some i ≤ l

or (3) A1 ∩A2 ∩ · · · ∩Ak ⊑ Bi for some i ≤ l

If (1) holds, then from A1 and rule (⇒ ∩) applied k−1 times we can obtain (i)
⊢CRS x ∈̂A1, . . . , x ∈̂Ak ⇒ x ∈̂(A1∩· · ·∩Ak). Considering that A1∩· · ·∩Ak ≡ 0,
from rule (taut− l) and Axioms A1, A2 we get (ii) ⊢CRS x ∈̂(A1 ∩ · · · ∩Ak) ⇒ .
Applying cut to (i) and (ii), we obtain ⊢CRS x ∈̂A1, . . . , x ∈̂Ak ⇒ , whence
⊢CRS Σx by weakening.

If (2) holds, then from Axiom A3 and rule (taut − r) we get ⊢CRS⇒ Bi,
whence ⊢CRS Σx by weakening.

Finally, assume that (3) holds. By what was shown for (1), we have (i) ⊢CRS

x ∈̂A1, . . . , x ∈̂Ak ⇒ x ∈̂(A1∩· · ·∩Ak). For simplicity, denote A = A1∩· · ·∩Ak.
Then A ⊑ Bi, implying A ∩ Bi ≡ A by Definition 9, whence from Axiom A1
and rule (taut− l) we get (ii) ⊢CRS x ∈̂A ⇒ x ∈̂A∩Bi. In turn, by A1 and rule
(∩ ⇒) we have (iii) ⊢CRS x ∈̂A ∩ Bi ⇒ x ∈̂Bi. Applying cut twice to (i), (ii)
and (iii), we obtain ⊢CRS x ∈̂A1, . . . , x ∈̂Ak ⇒ x ∈̂Bi, which yields ⊢CRS Σx by
weakening.

Thus ⊢CRS Σx in all three cases. As Σx ⊂ Σ in the standard sense of sequent
inclusion, this implies ⊢CRS Σ by weakening.

Proposition 2 is the cornerstone for proving the strong completeness theorem for
the logic LRS :

Theorem 1. The calculus CRS is finitely strongly sound and complete for ⊢RS,
i.e., for any finite set of sequents S ⊆ SeqRS and any sequent Σ ∈ SeqRS,
S ⊢RS Σ iff S ⊢CRS Σ.

Proof. (Sketch) As the backward implication (soundness) follows from Lemma 1
and Corollary 2, it suffices to prove the forward implication (completeness). The
proof is by counter-model construction based on Proposition 2 and the maximum
saturated sequent construction used e.g. in [1].

We argue by contradiction. Suppose that for a finite set of sequents S and a
sequent Σ = Γ ⇒ ∆ we have S ⊢RS Σ, but Σ is not derivable from S in CRS.
We shall construct a counter-model I such that I |= S but I ̸|= Σ.

Denote by F (S) the set of all formulae belonging to at least one of the sides
in some sequent in S, and let SV ∗ be the set of all set variables which occur
either in some φ ∈ F (S) or in Σ. Since S is finite, so are F (S) and SV ∗. Using
the method shown in in [1], we can construct a sequent Γ ′ ⊆ ∆′ such that

(i) Γ ⊆ Γ ′, ∆ ⊆ ∆′

(ii) F (S) ⊆ Γ ′ ∪∆′.
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(iii) Γ ′ ⇒ ∆′ is not derivable from S in CRS.

The construction is carried out by starting withΣ, and then adding consecutively
linearly ordered formulas in F (S) to either the left- or the right-hand side of
the sequent constructed up to that time, depending on which option results in
a sequent still not derivable from S in CRS. Such a construction is possible
because if S ̸⊢CRS (Γi ⇒ ∆i), then, for any φ ∈ F (S), we cannot have both
S ⊢CRS (Γi, φ ⇒ ∆i) and S ⊢CRS (Γi ⇒ ∆i, φ), since this would imply S ⊢CRS

(Γi ⇒ ∆i) by cut.
Call a sequent saturated if it is closed under the inference rules in CRS applied

backwards, whereby we assume that closure under the Boolean tautology rules
(taut − l), (taut − r) is limited only to premises with the set expression A in a
full disjunctive normal form with respect to the set SV ∗. By way of example, a
sequent Γ ′′ ⇒ ∆′′ is closed under rule (∨ ⇒) applied backwards iff φ ∨ ψ ⊆ Γ ′′

implies either φ ∈ Γ ′′ or ψ ∈ Γ ′′.
Let Γ ∗ ⇒ ∆∗ be the extension of Γ ′ ⇒ ∆′ to a saturated sequent which is

not derivable from F (S) in CRS (is is easy to see that such a sequent exists;
note that the restriction on the closure under tautology rules ensures that the
closure adds only a finite number of formulas to Γ ′ ⇒ ∆′.

Then we can easily see that:

(1) Γ ⊆ Γ ∗,∆ ⊆ ∆∗;
(2) F (S) ⊆ Γ ∗ ∪∆∗;
(3) Γ ∗ ⇒ ∆∗ is saturated and it is not derivable from S in CRS.

Now let Σa = Γa ⇒ ∆a be a subsequent of Γ ∗ ⇒ ∆∗ consisting of all atomic
formulas in Γ ∗ ⇒ ∆∗. Then by (3) S ̸⊢CRS Σa, and hence also ̸⊢CRS Σa. As
Σa is atomic, by Proposition 2, this implies that Σa is not valid. Accordingly,
there exists a framework R for LRS and an interpretation I of LRS in R such
that I ̸|= Σa. We shall prove that I is the desired counter-model for the original
sequent Σ too, i.e. that:

(A) I ̸|= (Γ ⇒ ∆) (B) I |= Σ for each Σ ∈ S

Let us start with (A). As Γ ⊆ Γ ∗,∆ ⊆ ∆∗, then in order to prove (A) it
suffices to show that I ̸|= (Γ ∗ ⇒ ∆∗). Since the only designated value in the
semantics of LRS is t and I(φ) ∈ {t, f,u} for any formula φ ∈ FRS , this means
we have to prove that:

I(γ) = t for any γ ∈ Γ ∗ I(δ) ∈ {f,u} for any δ ∈ ∆∗ (4)

As I ̸|= Σa, then (4) holds for all atomic formulas γ ∈ Γ ∗, δ ∈ ∆∗. To show that
it holds for complex formulas too, we prove that, for any complex formula φ, the
following is true:

(A1) I(φ) =

{
t if φ ∈ Γ ∗

f if ¬φ ∈ Γ ∗ (A2) I(φ) ∈
{

{f,u} if φ ∈ ∆∗

{t,u} if ¬φ ∈ ∆∗
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The proof is by induction on the complexity of φ, and (A1) and (A2) are proved
simultaneously, making use of the fact that Σ∗ as a saturated sequent is closed
under all rules in CRS applied backwards.

To illustrate the method used, consider first the case of ξ = ¬(x ∈̂A).
If ξ ∈ Γ ∗, then x ∈̂ −A is also in Γ ∗, since Σ∗ is closed under rule (¬ ∈̂ ⇒)

applied backwards. As (4) holds for all atomic formulas and x ∈̂ − A is atomic,
this yields I(x ∈̂ − A) = t. However, from Definition 6 and Corollary 1 we can
easily conclude that

I(x ∈̂A) =





t iff I(x ∈̂ −A) = f
f iffI(x ∈̂ −A) = t
u iffI(x ∈̂ −A) = u

(5)

which implies I(ξ) = I(¬(x ∈̂A)) = t by Definition 6.
In turn, if ξ ∈ ∆∗, then x ∈̂ − A is also in ∆∗, since Σ∗ is closed under

rule (⇒ ¬ ∈̂) applied backward. As (4) holds for x ∈̂ − A, then I(x ∈̂ − A) ∈
{f,u}, whence in view of (5) we get I(x ∈̂A) ∈ {t,u}. In consequence, I(ξ) =
I(¬(x ∈̂A)) ∈ {f,u} by Definition 6. Thus (A1) and (A2) hold for ξ

As another example, assume that (A1), (A2) hold for φ,ψ, and that ξ = φ∨ψ.
If ξ ∈ Γ ∗, then either φ ∈ Γ ∗ or ψ ∈ Γ ∗, since Σ∗ is closed under rule (∨ ⇒)
applied backwards. As a result, by the inductive assumption on φ,ψ we have
either I(φ) = t or I(ψ) = t, and consequently I(ξ) = t by Definition 6. In turn,
if ξ ∈ ∆∗, then φ,ψ ∈ ∆∗, and I(φ), I(ψ) ∈ {f,u} by the inductive assumption,
whence I(ξ) ∈ {f,u} by Definition 6, too. As a result, (A1) and (A2) hold for ξ
too.

The proof of other cases is similar, and is left to the reader.
It remains to prove (B), i.e., to show that I |= Σ0 for each Σ0 ∈ S. So let

Σ0 ∈ S. Then Σ0 = φ1, . . . , φk ⇒ ψ1, . . . , ψl for some integers k, l and formulas
φi, ψj , i = 1, . . . , k, j = 1, . . . , l. Clearly, we cannot have both {φ1, . . . , φk} ⊆ Γ ∗

and {ψ1, . . . , ψl} ⊆ ∆∗, for then Γ ∗ ⇒ ∆∗ would be derivable from Σ0, and
hence from S, by weakening. Since F (S) ⊆ Γ ∗ ∪ ∆∗, this implies that either
φi ∈ ∆∗ for some i, or ψj ∈ Γ ∗ for some j. Hence by (A1) and (A2), which we
have already proved, we have either I ̸|= φi for some i, or I |= ψj for some j,
which implies that I |= Σ.

6 Conclusions and future work

The crucial feature of three-valued logic presented in the paper is a complete
mechanism for reasoning about atomic formulas representing three-valued, rough
membership of the objects of the universe in rough sets. The three values taken
by the rough membership relation correspond to “crisp” membership of objects
in the three basic regions of a rough set: the positive, negative and boundary
one. The strong version of semantics with the single designated value t adopted
in the paper amounts to identifying membership of an object x in a rough set
A with its belonging to the positive region of A. However, in many applications
it is advisable to identify the above membership with x belonging to either the
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positive region or the boundary region of A — which corresponds to taking also
u as a designated value. The latter option, which leads to paraconsistent logic,
will be the subject of further work.

The use of connectives to form complex formulas enhances the expressive
power of the language, but the Kleene 3-valued connectives used here are just
one possible choice. Other interesting option, to be explored in the future,
are the  Lukasiewicz 3-valued connectives (including implication), and the non-
deterministic connectives observing the rough set Nmatrix considered in [3].
Exploring these choices is another direction for future work. A still another is
to consider a richer language which allows for expressing relationships between
objects — and here the most immediate future task will be extending the results
of this paper to a language featuring the subordination relation of [13].

The authors would like to thank the anonymous referees for very helpful
comments on the paper, including suggestions for directions of future work —
which we have included above.
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